Doping with Organic Halogen-containing Compounds the Bi₂Te₃-Bi₂Se₃ Solid Solutions

O.B.Sokolov, S.Ya.Skipidarov, N.I.Duvankov

Nord Specialized Design-Technological Bureau, Moscow, Russia E-mail: sctbnord@mail.sitek.ru; Tel.: (7-095)357-67-71; Fax: (7-095)348-07-00

Abstract

Presently, Bi2(Te, Se)3 solid solutions used as an n-type legs for thermoelectric devices, are doped with inorganic halogencontaining compounds. However, most of these compounds are liable to dissociation when exposed to light, they are hygroscopic and tend to electrization when poured from one place to another. These factors often give rise to wrong dosing of dopants in conditions of commercial production. This paper describes opportunities for doping of Bi₂(Te,Se)₃ solid solutions with organic halogen-containing compounds. For practical application it is proposed to use hexachlorethane (C2Cl6), dibrombenzol hexachlorbenzol (C6Cl6), $(C_6H_4Br_2)$, hexabrombenzol (C6Br6) and iodoform (CHI3). The advantages of the latter are shown as compared to inorganic halogencontaining compounds.

1. Introduction

Doping (donor) effect on Bi₂(Te,Se)₃ solid solution can be produced by the foolowing [1]: point defects (tellurium vacancies); dissolved oxygen; metals of the second sub-group of the I group (Cu, Ag, Au); tellurium and selenium, if they are available in excess of stoicheiometry; halogens. In practice, use is made of inorganic halogen-containing compounds [2]. These are halides of metals of the second sub-group of the I group (AgCl, AgBr, Cul, etc.); halides of metals of the second subgroup of the II group (ZnCl₂, ZnBr₂, Znl₂, CdCl₂, Hg₂Cl₂, CdBr₂, CdI₂, etc.); chlorides, bromides and iodides of antimony, bismuth and tellurium (SbCl₃, BiCl₃, SbBr₃, BiBr₃, TeI₄, SbI₃, BiI₃, etc.). However, inorganic halogen-containing compounds are liable to dissociation when exposed to light, they are hygroscopic and tend to electrization when poured from one place to another. Therefore, the necessity arises for

the search of halogen compounds free from the above mentioned shortcomings.

2. Choosing a dopant

investigation polyfluoreethylene ([C2F4]), For the hexachloroethane (C2Cl6), hexachlorobenzol (C_6Cl_6) dibrombenzole (C₆H₄Br₂), hexabromobenzole (C₆Br₆) and iodoform (CHI3) have been chosen. The considered organic halide-containing compounds are chemically nonhygroscopic and do not tend to electrization. Table 1 presents basic characteristics of the chosen organic halogencontaining compounds compared to those of somes inorganic halogen-containing compounds (mercurous chloride, cadmium chloride). It is clear from the tabled data that halogen content by mass in organic compounds is 2-3 times higher that in inorganic ones, though their mole content is of the same level (for completely substituted compounds).

3. Thermodynamic analysis

In the development of the technology for the synthesis and zone melting for commercial production it is rather important to have quantitative estimates of the variation of the equilibrium of chemical reactions depending on the synthesis conditions [3]. The technique described in [4] has been used. Thermodynamic calculations of $(Bi_2Te_3)_{90}(Bi_2Se_3)_{10}$ with various dopants have been made for the following conditions.

The synthesis and the vertical zone-melting effected via the melting of the components with a stoichiometric ratio in evacuated sealed-off quartz ampoules with an inside pressure P=0.1Pa, under temperature T=1073K. The specific free volume of the material during a process amounted to 0.000314 m³/kg. Calculation results are given in tables 2-4.

Table 1. Characteristics	of organic and	l inoganic ha	logen-containing	compounds.
--------------------------	----------------	---------------	------------------	------------

Halogen	F	Cl				Br		I
Compounds	(C ₂ F ₄) _n organic	C ₂ Cl ₆ organic	C ₆ Cl ₆ organic	Hg ₂ Cl ₂ inorganic	CdCl ₂ inorganic	C ₆ H ₄ Br ₂ organic	C ₆ Br ₆ organic	CHI ₃ organic
Molecular mass	50 (on chain)	236.7	284.7	472.2	183.3	235.8	551.4	393.7
Halogen content, mass.%	76.00	89.87	74.74	15.04	38.68	67.77	86.94	96.70
Halogen content, mole%	66.7	75	50	50	66.7	16.7	50	60
Factor of distribution of halogen in Bi ₂ Te ₃ [5]	-	1.2	1.2	1.2	1.2	1.0	1.0	0.86

Table 2. The composition of gas-vapour and condensed phases at synthesis of (Bi₂Te₃)₉₀(Bi₂Se₃)₁₀ without doping and doped

with inorganic compound - calomel (Hg₂Cl₂).

Components	Components, %mole							
5	Without	doping	0,125% Hg ₂ Cl ₂					
T, K	1073	293	1073	293				
	Gas-\	apour Pha	se					
Se	0.0164	imi	0.0188	Ě				
Те	0.1577	121	0.1994	**				
TeSe	0.0238	· • :	0.0273	45 X 3 5				
Bi	2.36 10-6	•	2.35 10-6					
BiCl	0	-	0.0116	() **				
BiCl ₃	0	•	0.1297	2				
BiSe	5.01 10-4	-	4.81 10-4	-				
BiTe	4.29 10-4	Y:##	4.13 10-4	ž,				
Hg	0	(4	0.4068	-				
HgCl	0	-	7.82 10 7	-				
HgCl ₂	0	- 6.50 10		T -				
	Conc	densed Phas	se	,				
Te	0	0.6928	0	0,4846				
BiCl ₃	0	0	0	0,1375				
Bi ₂ Se ₃	10,1927	10,1615	10,1356	10,1337				
Bi ₂ Te ₃	89,6085	89,1457	89,0635	88,8316				
HgTe	0	0	0	0,4126				

It is clear from table 2 that on doping of thermoelectric material with inorganic halogen-containing compound (Hg₂Cl₂), a corresponding bismuth halogenide (BiCl₃) is formed in a synthesized material. Metal telluride (HgTe) as compound is known to be a p-type semiconductor and its presence in n-type material can affect the properties of the latter. Besides, a small amount of excess tellurium appears in synthesized material. As it is seen from table 3, the doping mechanism of organic halogen-containing compounds are similar to the mechanism of inorganic galogen-containing compounds. In synthesis and zone-melting of material the formation of the corresponding bismuth halide (BiF3, BiCl3, BiBr3, Bil3), which on cooling transforms into a condensed phase and a small amount of tellurium appears. It should be noted, that formed bismuth fluoride (BiF₃) is in a condensed phase even at synthesis temperature.

Bismuth fluoride is a compound with high enthalpy of formation (ΔH²₂₉₃): 2Bi+3F₂→2BiF₃-904 kJ/mole. In this case, probability of its dissociation in Bi₂(Te,Se)₃ solid solution is rather insignificant. Therefore, this compound cannot have any noticeable effect on thermoelectric properties. It should be noted that BiCl₃, BiBr₃, Bil₃ are characterized by rather low enthalpy of the formation (ΔH²₂₉₃): -379 kJ/mole, -276 kJ/mole, -150 kJ/mole accordingly. Dissociation of these compounds in Bi₂(Te,Se)₃ solid solution takes place, which dielectric constant is similar to that of water (ε=80). In this case, halogens acquire an opportunity of releasing electrons to the zone of conductivity.

Table 3. The composition of gas-vapour phases at synthesis and zone-melting of n-(Bi₂Te₃)₉₀(Bi2Se₃)₁₀, which is doped with

organic halogen-containing compounds, in which hydrogen is substituted for haloid completely.

Components	Components, %mole									
(1 11)	0.020%[C ₂ F ₄] _n		0.026%C ₂ Cl ₆		0.031% C ₆ Cl ₆		0.0493% C ₆ Br ₆			
T, K	1073	293	1073	293	1073	293	1073	293		
			Gas-V	apour Phase						
Br	T 0	- 1	0	, (E	0)# 	6.885 10-5	*		
Se	4.018 10-2	*	3.932 10-2		1.941 10-2		3.913 10-2	.		
Te	0.9009		0.8625	, Ē	0.2201	F)	0.8566	# 3		
TeSe	2.869 10-2	<u> </u>	2.810 10-2	•	2.816.10-2	### ####	2.793 10-2	3 7		
Bi	2.053 10-6	1.	2.092 10-6	2	2.34 10-6	- 5	2.095 10-6	*		
BiF ₃	4.028 10-3	D M	0	#0 m	0	=	0			
BiCl	0	Ė	0.01236	•	1.237 10-2		0	.		
BiCl ₃	0		0.1665		0.1655		0			
BiBr	0	()	0	*	0		5.571 10-2	-		
BiBr ₃	0		0	**:	0		0.12026	-		
BiSe	4.708 10-4	•	4.745 10-4		4.759 10-4		4.741 10-4	(
BiTe	4.039 10-4	3	4.071 10-4	•	4.088 10-4	-	4.066 10-4	(5)		
CF ₄	3.229 10-6	-	1 0		0	*	0	84		
		1 ()	Cond	ensed Phase		8. 11 - 5.				
Te	0	0.9977	0	0.9452	0	0.9398	0	0.8927		
BiF ₃	0.2027	0.2066	0	0	0	0	0	0		
BiCl ₃	0	0	0	0.1706	0	0.1685	0	0		
BiBr ₃	0	0	0	0	0	0	0	0.1389		
Bi ₂ Se ₃	10.0674	10.088	10.0878	10.11	10.1211	10.076	10.0633	10.0912		
Bi₂Te₃	88.4452	88.3976	88.6318	88.604	88.9233	88.311	88.4202	88.461		
c	0.3101	0.3100	0.1706	0.1706	0.5090	0.5056	0.4159	0.4161		

The results of thermodynamic calculation of products content in material synthesis doped with organic compounds, where not all hydrogen atoms are substituted for halogen are given in table 4.

Table 4. The composition of gas-vapour and condensed phases in synthesis of n-(Bi₂Te₃)₉₀(Bi₂Se₃)₁₀, which is doped with organic halogen-containing compounds, in which hydrogen is substituted for haloid only partially.

Compo-	Components, %mole						
nents	0.0633% C ₆ H ₄ Br ₂		0.0773%CHI ₃				
T, K	1073	293	1073	293			
P, Pa	29400	0.1	33097	0.1			
	G	as-Vapour F	hase	100			
H ₂	0.1739	-	6.02 10-2	(**			
I	0		1.07 10-4	155			
н	0	3	2.32 10-3				
Br	7.71 10-6	:	0				
HBr	0.3943	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	0	Œ			
Se	1.60 10-2	75	4.73 10-2	_			
HSe	7.17 10 3	-	5.09 10-5	= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1			
H ₂ Se	3.18 10-2	-	1.32 10-2				
Te	0.1528	-	1.2365	=			
HTe	4.86 10-5		3.46.10-5				
H ₂ Te	4.63 10-5	-	1.91 10-5	•			
TeSe	2.32 10-2		3.36 10-2	•			
Bi	2.31 10-6		1.81 10-6				
BiBr	1.43 10-2		0				
BiBr ₃	1.55 10-3	121	0	-			
Bil	0		0.4524				
BiI ₃	0		7.81:10-7				
BiSe	4.93 10-4	-	4.51 10-4				
BiTe	4.23.10-4	35	3.87.10-4	(n <u>ii</u>)			
CH ₄	5.18 10-3	i.e	6.18 10-4				
CH ₃ Br	1.54 10-6	-	0	-			
	The state of the s	Condensed	Phase				
Te	0	0.8905	0	0.9185			
BiBr ₃	0	0.1378	0	0			
Bil ₃	0	0	0	0.152574			
Bi ₂ Se ₃	9.9941	10.0285	10.0201	10.11455			
Bi2Te ₃		87.9094	87.9817	88.6618			
C	1.2347	1.0338	0.1510	0.1144			

It is clear from table 4, that in using not-completely substituted organic halogen-containing compounds, the character of doping procedure is the same as with doping of completely substituted compounds. However, due to hydrogen presence in molecules of dopants while sinthesizing materials in a gas-vapour phase, the formation of a number of byproducts and intermediate products, for example H₂Te, H₂Se, the traces of which could be present in a final product is possible. As we see in tables 3 and 4, nearly all amount of carbon emitted in the process of organic halogen-containing compounds, is in condensed phase (graphite). The amount of graphite emitted in the process of thermal decomposition of the dopes under consideration, is

sufficient for the formation of a continuos film on the surface of the ampoules. The letter can be considered a favourable indicator, as it allows to eliminate the stage of quartz ampoules graphitization in the technological process.

4. Thermoelectric properties

All measurements of properties have been taken in parallel to the growth direction of ingots of 30mm diameter and about 220mm length. The results of conductivity measurements along ingots of zone-melting material doped with organic halogencontaining compounds are represented in figure 1.

Figure 1. The dependence of conductivity (σ at 25°C) distribution along the ingot of n-(Bi₂Te₃)₉₀(Bi₂Se₃)₁₀ on the nature of the dopant: 1-C₂Cl₆; 2-C₆Br₆; 3-CHI₃.

As one can see, the most equal distribution of conductivity along the ingots is achieved with application of hexabromobenzene as a dopant.

The dependencies of conductivity and Seebeck coefficient n-(Bi₂Te₃)₉₀(Bi₂Se₃)₁₀ on the concentration of introduced organic halogen-containing compounds are shown in figure 2.

Figure 2. The dependence of conductivity (σ at 25°C) and Seebeck coefficient (α at 25°C) of n-(Bi₂Te₃)₅₀(Bi₂Se₃)₁₀ on dopant content: 1-C₂Cl₆; 2-C₆Br₆; 3-CHI₃.

Different slopes of curves for different dopant additions in figure 2 are responsible for the differences in their molecular weights and correspondingly by differences in mass concentrations at equimolar content (by a halogen).

The influence of composition n-Bi₂(Te,Se)₃, doped with hexabromobenzene (C₆Br₆), on its temperature dependence of figure of merit was investigated. Temperature changes for materials with varying content of bismuth selenide are shown in figure 3.

Figure 3. Temperature dependence of figure of merit for n-(Bi₂Te₃)(Bi₂Se₃) doped with hexabromobenzol (C₆Br₆) at various content of bismuth selenide (Bi₂Se₃, %mole): 1-0%; 2-4%; 3-6%; 4-8%; 5-10%; 6-20%.

It is clear from figure 3, that material containing 6% mole of bismuth selenide ($\rm Bi_2Se_3$) and 0.049% mass. $\rm C_6Br_6$ on doping, has conductivity 970-1000 S/cm, Seebeck coefficient 210-215 $\rm \mu V/K$ and mostly figure of merit $z=3.0\cdot10^{-3}~\rm K^{-1}$.

5. Conclusions

Through the method of thermodynamic analysis the advantages of organic galogen-containing compounds for the doping of Bi₂(Te,Se)₃, as compared to inorganic ones are proved.

As a practical example, the experimental research into the doping ability of hexachloroethane (C_2Cl_6), hexaclorobenzol C_6Cl_6), dibromobenzol ($C_6H_4Br_2$), hexabromobenzol (C_6Br_6) and iodoform (CHI₃) has been effected.

The most equal distribution of conductivity along the zone-melting ingots n-Bi₂(Te,Se)₃ is achieved with application of hexabrombenzol (C₆Br₆) as a dopant.

The most figure of merit in the interval ±50°C, simultaneously with the most equal distribution of conductivity along zone-melting ingots is achieved in the solid solution Bi₂Te₃-Bi₂Se₃ doped with hexabrombenzol (C₆Br₆), containing 6% mole of bismuth selenide (Bi₂Se₃).

References

- [1] G.N.Gordyakova, G.V. Kokosh, S.S.Sinani, Investigation of thermoelectric properties of Bi₂Te₃-Bi₂Se₃ solid solutions, J. Techn. Physics 28(1)(1958), pp.3-17(in Russian).
- [2] M. Sotirova, St. Sotirov und A. Andreev, Sofia, Herstellung und eigenschaften thermoelektrscher substanzen auf der basis von dotierten Bi₂Te₃-Bi₂Se₃ – Verbindungen Freiberger Forschungshefte, B. 1975, N175, s.245-257.
- [3] O.B.Sokolov, S.Ya.Skipidarov, N.I.Duvankov, The variation of the equilibrium of chemical reactions in the process of (Bi₂Te₃)(Sb₂Te₃)(Sb₂Se₃) crystal growth, Journal of Crystal Growth, V.236(2002), pp. 181-190.
- [4] G.B.Sinyarev, N.A.Vatolin, B.G.Trusov, G.K.Moiseev, Computer-aided thermodynamic analysis of metallurgical proceesses, M., "Nauka publishers", 1982, 263p. (in Russian).
- [5] B.M.Goltsman, V.A.Kudinov, I.A.Smirnov, Bi₂Te₃-based semi-conductor thermoelectric materials, M., Nauka Publishing House, 1972, 320 p. (in Russian).